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This paper considers 33 preservice secondary mathematics teachers’ solutions to a
famous sampling problem, well known for confounding educated adults. Of
particular interest is the use of intuition and/or formal mathematics in reaching a
conclusion. The relationships of solution strategy to students’ background in formal
mathematics and to gender are also considered. Implications for teaching statistics at
both the secondary and preservice teacher education levels are discussed briefly.

A town has two hospitals. On the average, there are 45 babies delivered each day in the larger
hospital. The smaller hospital has about 15 births each day. Fifty percent of all babies born in
the town are boys. In one year each hospital recorded those days in which the number of boys
born was 60% or more of the total deliveries for that day in that hospital. 

Do you think that it’s more likely that the larger hospital recorded more such days, that the
smaller hospital did, or that the two recorded roughly the same number of such days? 

The hospital problem, as the above problem is usually named, began its life in
the work of Kahneman and Tversky (1972) in their ground-breaking work on
people’s understanding of representativeness. They reported data from 95
undergraduate students with no background in probability or statistics, 50 of whom
were asked the question in the above form and 45 of whom were asked which
hospital had “less” days when 60% or more of the babies born were boys. For each
form of the question the results were the same, with 20% of the students making the
appropriate choice: the smaller hospital for “more” days with 60% or more boys and
the larger hospital for “less” days with 60% or more boys. Fifty-six percent of each
group said that the results would be “about the same for each hospital (i.e., within
5% of each other)” (p. 443). This exemplifies what Tversky and Kahneman (1971)
described as the law of small numbers, that is, the belief that a small sample represents
a population just as well as a large one. For the problem above this leads to the
conclusion that the two hospitals recorded about the same number of days with 60%
or more boys born. 

Although there have been criticisms of the wording used by Kahneman and
Tversky (1972) (e.g., Well, Pollatsek, & Boyce, 1990), this problem has been used
repeatedly over the years to explore understanding of sampling and the variation
associated with different sample sizes (cf. Well et al., 1990). These studies have been
based mainly on tertiary students and school students have not often been asked the
hospital question. Of 80 students in grades 5, 7, 9, and 11, and 18 prospective
teachers specialising in mathematics, Fischbein and Schnarch (1997) found only one
grade 9 who suggested that the smaller hospital would have the more extreme
result. Their question included more explanation, for example the actual number of
boys for each sample size that equalled 60% of births, but they observed the percent
of students whose responses reflected the law of small numbers rise from 10% at
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grade 5 to 80% at grade 11, and 89% of the prospective teachers. Watson, Collis, and
Moritz (1995), in a study of students’ understanding of sampling in grades 3, 5, 7,
and 9, found that of 12 students asked a similar question in an interview setting,
none could argue from a correct basis. Watson and Moritz (2000) asked 59 students
this problem in interviews and of these, only six recognised the smaller sample as
more likely to have the extreme result and were able to give an adequate
justification. The choice of the large or small sample often appeared random, with
the reasons given for choosing the small sample also being given for choosing the
large one. In a setting with the large sample from the city and the small sample from
the country, students in grades 3, 5, and 9 chose the small sample “because there are
more boys in the country” and students in grades 3 and 7 chose the large sample
“because there are more boys in the city”. Story-telling rather than an appreciation
of sample size often dominated answers of younger students. Reasons given for
saying the large and small samples had the same chance of having the extreme result
included “because it’s random” or “because percentages aren’t definite numbers
and so are the same for each sample”.

Researchers studying people’s appreciation of sample size in the context of the
hospital problem, however, have not explored the understanding of people with a
formal background in mathematics and the potential to call upon formal statistics to
answer the hospital question in terms of the actual probabilities associated with the
two samples having 60% or more boys. Fischbein and Schnarch (1997) did not
document the mathematical background of the preservice teachers in their study but
“none of the students had previously received any instruction in probability” (p. 97);
hence it is likely this statement covers them. Anecdotal evidence (N. Windsor,
personal communication, November 9, 1998) indicates that many senior secondary
students, when given the hospital problem immediately after a unit on the normal
approximation to the binomial distribution, do not recognise its applicability. Of
those who do, many still have difficulty carrying out the process correctly to achieve
the appropriate conclusion. A few, however, find it a straight-forward application.

Whereas perhaps not all preservice mathematics teachers would have been
exposed to the theoretical mathematics necessary to calculate the probabilities in
each hospital, at least it would be expected that they would have access to the basic
mathematics to calculate percents, fractions, and basic probabilities based on equal
likelihood (of births of boys and girls). For these people, it is hence of interest to
observe what might be termed intuitive solution strategies versus strategies based
on formal mathematical knowledge relevant to the problem. This distinction reflects
the work of Fischbein and Grossman (1997), for whom “the term intuitive
knowledge refers to a global, direct estimation, in contrast to a solution based on
explicit computation” (p. 29). For the purposes of this study, the summary of
Fischbein’s (1987) comprehensive work on intuition presented by Fischbein and
Schnarch (1997) highlights the essential features relevant to the hospital problem.
“Intuition [is] a cognition that appears subjectively as self-evident, directly
acceptable, holistic, coercive, and extrapolative... An intuitive cognition is
distinguished from an analytically and logically based cognition by the feeling of
obviousness, of intrinsic certainty” (p. 96). It is also of interest to see which
mathematical skills are chosen by those with more formal training and whether this
is backed up with any reference to intuition. Some people may have experienced
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sampling in their personal or professional lives that helps them intuit the likelihood
of greater variation in the smaller sample and feel no need for further justification
except for a statement. Others may have the ability to calculate a normal
approximation to the binomial distribution without any appreciation for the
meaning of the result. 

The Current Study
The opportunity to explore further the use of formal mathematics as a solution

strategy for the hospital problem arose in the context of a case study used in a
preservice program for secondary mathematics teachers. The case study, Chances
Are, was one of a series published by Harvard University to be used with high
school mathematics teachers (Merseth & Karp, 1997). The pre-case worksheet for the
case study presented the problem as given at the beginning of this paper and asked
participants to provide a solution and list any assumptions made. The case study
was based on a grade 11 class with a female teacher using this problem and group
work to reinforce concepts related to probability and sample size that the class had
been studying for the past few days. The main focus of the case study was on one
group of five students who had difficulty with the problem and demonstrated many
of the misconceptions found in earlier research. Social and pedagogical issues were
also considered as part of the case study. The case study was used with three groups
of preservice secondary mathematics teachers, students in the Bachelor of Teaching
(BTeach) course at the University of Tasmania. 

The objective in this small study is to add to the information available on
strategies adults, in particular people who are planning to be high school
mathematics teachers, will choose to answer the hospital problem. The aims are (a)
to observe whether mathematics, intuition, or a combination of the two is most
successful in achieving an acceptable solution, (b) to document the types of
mathematics employed to support intuition or as the basis for a mathematical
justification, (c) to suggest propensities for solution strategies of students with more
or less formal mathematics training or by gender, (d) to report students’ reactions to
the problem, and (e) to suggest action to improve both intuitions and confirmatory
skills in this area. 

Subjects

The 33 preservice secondary mathematics teachers in this study were aged from
21 years, having just finished a university degree, to middle age, having worked in
other careers before deciding to become mathematics teachers. The older students
came from careers in geology, biology, engineering, meteorology, statistics, and taxi
driving. The group varied widely in its previous exposure to formal mathematics
courses. One was on leave from enrolment in a PhD program in mathematics,
whereas others had done no formal mathematics at university but had convinced
the head of school (not the author) that they had a mathematics background
adequate for the course. Twenty-three BTeach students were classified as having at
least a minor in mathematics (one-third of a second year university course) and 10
were classified as “other”, that is they had fewer formal mathematics courses than
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required for a minor as part of their initial degree. There were 14 females and 19
males in the sample. 

Procedure

The BTeach students were given the pre-case worksheet to complete overnight
before the case study was handed out. They were told to answer the question by
themselves and that although the solutions would be collected and read by the
lecturer, no marks would be awarded, except for completing the exercise. The
students knew that they would be participating in a case study based on the
problem and appeared to be motivated to think seriously about it. Only one solution
was very short and appeared to be by a student who had not taken the problem
seriously or had little idea of how to solve it. All responses presented in the Results
section are taken from the written responses of the BTeach students on the pre-case
worksheet. The discussion of these solutions took place before the detailed
discussion of the Harvard case study. Other student contributions, in particular the
presentation of results from simulations, took place throughout the several sessions
when the case study was the focus of discussion.

Analysis

The method of analysis employed was a clustering technique (Miles &
Huberman, 1994), which looked at similarities in solutions to the problem. Of
particular interest were those judged to be based on intuition in relation to sample
size with no support in the way of mathematical calculations, those that displayed
mathematical calculations but displayed no indication of intuition influencing the
answer, and those that appeared to mix intuition with mathematical calculations.
Further, when mathematics was employed in the solution, it was of interest whether
it might be termed basic mathematics, such as percents and fractions, or theoretical
mathematics based on the binomial and/or normal distributions. Finally it was of
interest whether the conclusion reached was correct or incorrect. The analysis was
based on “observed” outcomes, that is, only what was written on paper. If a student
held an intuition that was not stated, obviously no credit was given. After the
clustering analysis had taken place, note was made of gender and whether students
were considered to have a strong background in mathematics. 

Results
The results are summarised in Table 1 by whether the solution to the hospital

problem was based on intuition as presented by the student, whether the
presentation was based solely on a mathematical argument, or whether a mixture of
approaches was stated. The results are also split by the correctness of the conclusion
stated, except in one case. In that case a student stated a proposition of equal
outcomes, attempted to calculate probabilities, made an error that indicated the
small hospital had a very slightly higher probability, and chose that hospital. Given
the numerical result the student should have retained the decision of “roughly
equal” and was allocated as if that were the conclusion. Examples that illustrate the
categories will be given according to the method of approach.
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Table 1
Clusters of Responses to the Hospital Problem

Strategy

Correctness of
Conclusion Intuition Mathematics Intuition and Mathematics

Formal maths Formal maths
Correct 2 males 1 male 2 males
(n = 18) 5 females 1 female 1 female

Basic maths
6 males

Formal maths Basic maths
Incorrect 4 males 3 males 1 male
(n = 15) 4 females 1 female 2 females

Total = 15 Total = 12 Total = 6

Intuition Only

Fifteen BTeach students gave responses deemed to be based on intuition only.
Although some of these solutions contained numbers, these were not used with
calculations to support the conclusion. Of these 15 solutions, 7 chose the smaller
hospital based on the correct reasoning of sample size. These responses appeared to
reflect previous experience of some sort involving variation in samples. Typical
responses are the following, which, although including numbers, had no
calculations. 

I can’t work this out mathematically, but intuitively I would say that the smaller
hospital is more likely to have more variation from the average of 50% boys. This is
because even though the probability of a head (or tail) when tossing a coin is 1/2, this
is only the case the more times we toss the coin (ie the head won’t necessarily turn
up once in every 2 tosses, but the more times the coin is tossed, the closer the heads
get to a frequency of a 1/2). Similarly, the more babies there are, the more likely the
frequency of boys is to converge to 50% of births. 

Hospital 1 has on average 3/4 of births for the town. Hospital 2 has on average 1/4
of births for the town. Hospital 1 has the greater % of babies being born – it is more
representative of the whole town, so if 50% of the births were boys for the whole year,
the likelihood of 60% or more of the births in one day being boys is less than that of
Hospital 2. Because when dealing with larger numbers, the chance of a day’s births
being 60% or more boys is less than when dealing with smaller numbers, such as
Hospital 2.

One person in this group mentioned that data would approximate a normal
distribution but expanded only to say, “the degree of fit to the normal curve can be
expected to be better for a larger sample size”. The statement appears to reflect
previous experience but is not backed up with any further mathematical argument. 

Of the eight solutions that did not choose the small hospital, two did not reach
a discernible conclusion. One of these stated two possibilities:



Different sample sizes, 45 to 15 babies \ larger sample is more representative of the
community as a whole. Considering this I would suggest that the larger hospital is
more likely to have a birth rate closer to the norm. However, over a period of a year
I would suggest that the 2 hospitals would have roughly the same number of such
days. 

The other only eliminated the possibility that the larger hospital would have more
days with 60% boys born, but did not choose between the other two alternatives.
One student stated the following as a final comment: “If more births occur at the
larger hospital, there is a greater likelihood that more boys will be delivered at the
larger hospital.” Although this statement is technically correct and would not
preclude a correct comment on the hospitals, no other comment was made. The
other five students indicated that the hospitals would have roughly the same
number of days with 60% or more boys born. Typical of these is the following. 

Percentages are proportions of original sizes. 60% is the same for both hospitals –
only depends on original number to work it out. There is no reason why the larger
hospital should have 60% boys more often than the smaller hospital. It’s not asking
which hospital turns out more boys because then the bigger hospital would do that. 

Of the 15 BTeach students who used intuition only as a basis for their solutions,
8 were among the group with less theoretical mathematics in their undergraduate
degrees. Of these 8, half reached the correct conclusion. Of the 15, 6 were male and
9 were female with the females being more successful (56%) than the males (33%).

Mathematics Only

Twelve students provided solutions based on mathematical arguments with no
indication of previous experience or other intuition that would lead to belief in that
solution at the start of the exercise. Eight of these twelve students reached the correct
conclusion. Two of these students recalled from previous experience that the
problem involved the binomial distribution and went to their old texts to find out
how to carry out the calculations. One used the normal approximation to the
binomial for both hospitals, whereas the other used binomial tables for the small
hospital and the normal approximation for the large one as shown in the following
argument. 

When I first read this problem I saw 2 normal distribution curves representing the
two hospitals and the number of births each day, then as I read on this was replaced
by another curve for the total population and the proportion/percentage of boys
born each day (the hospitals then forming samples of the total population of the
towns’ births). When I came to the question I immediately thought – they must have
both recorded roughly the same number of days where the number of boys born was
60% or more because they (the hospitals) sample the same population (the town).

Assumptions: Each hospital is a random sample of the population, i.e., 50% of babies
born in each hospital are boys.

The sample size of smaller hospital is large enough to accurately
represent the total population and hence no significant difference
between the hospitals.
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Reviewing the problem I decided the sample size of the small hospital was too small
to have a normal distribution so after a little research (text books) and remembering,
I realised that the sample would have a Binomial Distribution.

n: trials = 15

p: success probability = 0.5

where q = 1 – p = 0.5

and x = n

n: trials = 15

p: success probability = 0.5

where q = 1 – p = 0.5

and x = n X 60% = 9.

Also assuming the trials are independent, i.e., the chance of a boy being born is not
dependent on the previous births.

P(X ≥ x) = P(X ≥ 9) = 0.30 using the Cumulative Binomial Distribution tables.

The larger hospital with its larger sample size n > 20 and p not too close to 0 or 1 can
be approximated by the Normal Distribution, where:

p = 0.5 P(X ≥ x) = P(X ≥ 27) = P(Z ≥ (x – µ)/s)

q = 0.5 = P(Z ≥ (27 – 22.5)/3.35)

n = 45 = P(Z ≥ 1.3416)

µ = np = 22.5 = 0.5 – P(0 > Z > 1.3)

s = √npq = 3.35 = 0.09, using areas under Normal Probability curve.

x = n X 60% = 27

Hence the Probability that the smaller hospital will have more days in which 60% or
more of those births will be boys, is greater than that of the larger hospital.

P(small hospital) = 0.30 ≥ P(large hospital) = 0.09.

This student forgot the continuity correction for the normal approximation to the
binomial, which was remembered by the other student who found P(x ≥ 26.5) = P(Z
≥ 1.19) = 0.117. Neither person commented on their surprise or otherwise with the
answer, although as seen above the person providing that response indicated an
initial belief that the hospitals would have roughly the same number of days with
60% or more boys born.

One other student attempted to calculate binomial probabilities but only
calculated the exact probabilities for 9 boys out of 15 and 27 boys out of 45. Although
incorrect to answer the question based on “60% or more boys”, these values led to
the correct conclusion that the smaller hospital was more likely to have exactly “60% 
boys” born. 

The other four students with the correct conclusion used simpler mathematical
arguments based on how likely it would be to achieve deviations from the expected
number of births to reach the 60% value. After stating that for the total of 60 births
per day, 30 on average would be boys, one student argued as follows. 
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Given that, for the larger hospital to record 60% or greater boys in a given day would
require at least (27/30) 90% of the average number of boys born per day, as compared
to only 30% (9/30) or more for the smaller hospital, one would suggest that it is more
likely for the smaller hospital to record a greater number of such days. 

After displaying a few percent calculations, another student argued as follows. 

Given that 53.3% of the boys are already present (8 for the small hospital and 24 for
the large hospital). It only requires 1 more boy for the small hospital to give 60% but
requires 3 boys to give 60% for the large hospital. The chances of 1 more boy is [sic]
higher than the chances of 3 more boys. 

Variations on this theme were expressed with probabilities, the percents represented
by each birth, and the days required by the large hospital to redress an imbalance. 

Four of the students who used formal mathematics in their solutions made
errors that led them to the wrong conclusion. One made an error in the formula
when applying the normal approximation to the binomial and one applied a
hypothesis test incorrectly to the two hospitals. Both concluded that the hospitals
would be equally likely to have 60% or more boys born. A third student did not
think there was enough information available to use the binomial distribution, did
some calculations to estimate total births with “unknown” probabilities for
“number of days greater than 60%”, which led to the conclusion that the large
hospital would have more “60% or greater” days. The final solution in this group
was one mentioned earlier where an incorrect calculation of probabilities (0.21 and
0.23) should have led to the conclusion that the hospitals would have roughly the
same number of days with 60% or more boys born. 

Only one of the students in this group of 12 was considered to have a weak
formal mathematics background. This was the student who used the normal
approximation correctly for both hospitals. His university major was in zoology and
although he had done no formal mathematics courses at university, he had worked
for 10 years in positions involving scientific research. Of this group of 12 using only
mathematics for the problem, two were female, one providing a correct solution. Of
the 10 males, 7 were correct.

Intuition and Mathematics

Only six students provided solutions that appeared to attempt to justify
intuition, including previous experience, with a mathematical argument, of which
half were correct. The three BTeach students providing correct conclusions used
very different approaches. One provided a graph of a normal distribution curve
centred at 50, with the horizontal axis labelled “percentages of boys” and the vertical
axis labelled “Num. of days”. Under the graph was a paragraph, edited extracts of
which are as follows. 

If all things are considered equal both should produce the above distribution.
However with the smaller hospital I would imagine there is more chance of (looking
at extremes) all babies being boys than in the other hospital with an average of 45.
Hence I would envisage that the curve for the smaller hospital would be a bit flatter
resulting in ... a lesser value for the 60% mark ... so although it would be flatter it
would be longer hence we may find that the larger hospital with its larger sample
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will result in more days closer to 50% resulting in a more pointy distribution while
the other is more flat - at this point I would imagine that the smaller hospital may
lean towards a greater number. 

The second student reported an a priori belief in equality of the hospitals, but then
argued that as n approached infinity the ratio of boys to all births would approach
1/2, hence “the smaller hospital will be more likely to have 60% or more boys a day
over a year”. To confirm this belief the student went to a senior secondary
mathematics book, found the formula for the binomial distribution and correctly
calculated the probabilities for both hospitals using a calculator. The third student
expressed the correct intuition based on sample size and attempted to follow the
approach of the previous student. Without a reference for the appropriate formula,
the student guessed and achieved the correct relationship of the two probabilities
but realised that the actual values were incorrect. 

The other three students who mixed intuition and mathematics used basic
mathematics. All concluded that the hospitals would have about the same number
of days with 60% or more boys born. One argued sequentially and erroneously, that
no matter how many children are born, the probability of all of them being boys is
50%. The claim was made individually for up to four babies and then extrapolated
to 15, 45, and 60. Another worked with fractions, concluding the number of ways to
get 60% or more boys was 6/15 = 2/5 in the smaller hospital and 18/45 = 2/5 in the
larger hospital, and hence “the two hospitals record roughly the same number of
days”. His final comments, however, indicate that he may have become confused by
the additional information about the 365 days on which data were recorded. He
stated the following. 

Initially I believed that the smaller hospital has a greater likelihood of having ≥ 60%
of births being boys because of the greater variation due to the small sample size. 

However because the births are independent and at each one the P(B) = 1/2, I believe
that over the period of 365 days (which is a fair amount [sic] of trials) the variation
will average out so that the two hospitals will record roughly equal number of days
where the percentage of boys born was ≥ 60%.

Finally, after translating percents into numbers for the two hospitals and doing
comparisons, a student argued, “For the small hospital the fluctuation between 50-
60% is only 1-2 children, and 4-5 for the large hospital but they [large] have more
children so I think it would be about the same for both.” 

Only one of the six students in this group was considered to have a weak formal
mathematics background. This was the one who made the erroneous claims about
all boys occurring 50% of the time independent of sample size. In this group half
were male.

Discussion of Results
The first three aims of the study are considered in this section. Several

observations can be made about the strategies and success of preservice
mathematics teachers in solving the hospital problem. Their success rate (55%) is not
surprising compared to the tertiary students surveyed by Kahneman and Tversky
(1972), or the prospective teachers surveyed by Fischbein and Schnarch (1997),
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considering their mathematical backgrounds. The rate did not differ greatly for
females (50%) and males (58%). What may be considered surprising is the apparent
lack of attempt to engage both intuition and mathematical skills. Only six students
(18%) appeared to be working with both. 

The students who used intuition only may not have encountered the binomial
or normal distributions before but all appeared to understand subsequent
discussions of these when presented by other members of the class. They also may
not have had immediate access to sources that could supply needed information or
felt that the problem was not intended to be that complicated. That those who used
intuition only were only successful about half of the time points to the need to make
students aware of two pitfalls: one is not looking for mathematics to back up
intuitions and the other is knowing which mathematics is appropriate to use. In
identifying the general principles that influence intuitions in inappropriate ways
during probabilistic reasoning, Fischbein and Schnarch (1997) identified ratio as a
schema that caused difficulty for the subjects in their study. 

The general principle identifiable in the problems relating to the effect of sample size
is the equivalence of ratios. For example, the concept of ratio is involved in the
students’ incorrect solution of the problem of the two hospitals. Students are
apparently misled by their belief that one must use ratios to solve this problem.
Instead, one has to consider another stochastic law, the law of large numbers. As the
sample size (or the number of trials) increases, the relative frequencies tend toward
the theoretical probabilities. For our subjects, not trained in stochastics, the principle
of equivalence of ratios imposes itself as relevant to the problem and thus dictates the
answer. It is the evolution of this principle that shapes the evolution of the related
misconception and causes it to become stronger as the student ages (p. 103). 

As seen in the responses from the preservice teachers in the current study, the
influence of ratio, expressed in terms of percent, was significant in about 20% of
responses. 

The students who presented mathematical arguments with no hint of using
intuition or previous experience were more successful (67%) than those who used
intuition only (47%), but those who made errors that led to the wrong conclusion
illustrate the difficulty when there is no intuition or previous experience to test
against one’s mathematical calculations. This was particularly true of the two
students who had full mathematics majors (one a double major) but made errors
with the normal distribution and hypothesis testing. Both were very confident of
their initial conclusions.

Of the six who employed both intuition and mathematics, half reached the
correct conclusion. These used formal mathematics related to the model appropriate
for the hospital problem. The others based arguments on basic mathematics that
was misinterpreted in the complex context. The response that indicated the chances
of all-boy samples were 50%, was similar to responses about four coin tosses being
tails observed by Moritz and Watson (2000), for between 28% and 49% of students
in grades 6 to 11. That a preservice teacher has the same difficulty as many students,
in an area considered by the author at least as a fundamental part of probability,
points to this as an area for research based on instructional intervention.

Of those who used mathematics in their solutions, either with or without
intuition, half used basic mathematics and half at least attempted a solution based
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on the normal and/or binomial distributions. That overall a third of these were
incorrect is somewhat worrying for preservice mathematics teachers. Perhaps most
disturbing was the treatment of percents as absolute numbers and the
misunderstanding of basic probability, but the lack of checking of formal
mathematics against other criteria was also a matter of concern.

Of the 10 students considered to have weak formal mathematics backgrounds,
eight used intuition, including previous experience, to solve the problem, one used
formal mathematics only, and one appeared to mix intuition and basic mathematics
(unsuccessfully). Overall half of these students were successful, a result not very
different from those considered to have a strong mathematics background (57%). It
is hence not possible to make any claims about differing success rates being
dependent on the extent of one’s previous mathematical background. The only
gender difference that might arouse further interest was the observation that 10 of
the 12 students (83%) who used mathematics only in their solutions were male.
Combined with the 60% of females in the group that used intuition only, one might
suggest a hypothesis of gender preference for the use of intuition or formal
mathematics. This would be an interesting area for further research that could
impact on classroom expectations of future teachers.

Student Reactions
Student reactions to the correct response during class discussion were mixed

with some who had used intuition at first seemingly overwhelmed by the theoretical
solution. Several mathematics majors lamented their lack of practical experience in
statistics that would have assisted in making judgments about sample size. This was
summed up by the PhD student who said the following in his evaluation of the case
study. 

...there is no substitute for exposure to practical problems when it comes to
understanding statistics. Even though I have completed a few courses in statistics at
university level I still found that my intuition let me down when it came to working
on this problem. 

He further claimed in class discussion that he had never carried out any sampling
during his study of statistics. In a sense this problem turned out to be a “leveller” for
the groups who worked on it and completed the case study. Since the success rate
was not related to previous formal mathematics experience, it was a humbling
experience for some and a confidence builder for others.

Several students made comments suggesting they had difficulty because the
problem stated the extreme result in terms of boys’ births only. One claimed that the
problem should be reworded to include girls but then went on to solve it correctly
using intuition only. Not appreciating the symmetry of the problem in terms of boys
and girls was one of the features included in the Harvard case study (Merseth &
Karp, 1997) as a difficulty for high school students. This point was well taken by the
preservice teachers and their own difficulties enhanced the relevance of the case
study. The fact that a few of the BTeach students experienced the same difficulties
with the relationship of percent and actual numbers as the students in the case study
and those interviewed by Watson and Moritz (2000), reinforced the need to
concentrate on percent in the early years of secondary school.
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During the class discussion one of the students who had reached the wrong
conclusion would not consider other students’ correct intuitions until his original
mathematics was proved wrong. Having stated “Bi(n,q) ≈ N(nq, nq(1 – q))”, he
forgot the square root for the standard deviation. He thus concluded that z = 0.2 for
all n and hence both hospitals have roughly the same number of days with 60% or
more boys born. Once convinced of his error, however, he quickly produced the
following elegant argument for the class. 

As Bi(n,�) ≈ N(n�, �(n�(1 – �))), for a value of � = 0.5 and an x-value of .6 or more
boys, z = (0.6n – 0.5n)/�(n(0.5)(0.5)) = .2�n. Hence as n increases the z-value
increases. Since we are interested in P(z ≥ 0.2�n), when n = 15, the probability is
greater than when n = 45. 

This value reflects the area under the normal curve to the right of 0.2÷n, which
decreases with increasing n. With a sketch all students appeared convinced. 

Overall in their evaluations, the students were positive about the case study. The
next section includes a summary of the simulations used by the BTeach groups as a
basis for discussion of how to enhance an intuitive appreciation of the impact of
increasing sample size on experimental outcomes.

Suggested Action
A simulation suggested in the Harvard case study (Merseth & Karp, 1997) is to

use 15 coins and 45 coins to simulate the births in the two hospitals. The preservice
teachers immediately saw the value of this analogy but also realised that it might be
difficult to implement in a classroom. It was interesting to observe that without very
much previous experience with simulations themselves, it took the groups some
time to agree on a workable classroom procedure for using 60 coins. Less noisy ways
to provide simulations involved using computer software or a graphics calculator.
Windsor (1998) provides the instructions necessary to carry out the simulation on a
TI-83 graphics calculator and discusses using it with senior secondary students.
BTeach students were given the opportunity to trial this method, found it relatively
easy to follow instructions, and felt it was a good application of the technology, if it
were available.

The probability simulation software for Macintosh, ProbSim (Konold & Miller,
1993), provides the opportunity to see samples being created, as shown in Figure 1.
This software provides an intermediate step between coin simulations and a “magic
box” computer program that produces only a final probability or number of days
per year when 60% or more births are boys. As seen in Figure 1, the sample size is
set at 15 for a random generator (the Mixer) containing a G and B to determine each
birth. Using 365 repetitions produces a data record, which can be analysed to count
how many days have 9 or more (60%) boys. This result is shown in the Analysis
window in Figure 1. A similar outcome for 45 days was also created with the
software. Repeated outcomes for different sample sizes were plotted by the BTeach
students to document the relative occurrence of extreme results for different sized
hospitals to observe the trend with increasing sample size.
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Figure 1. Simulation of 15 births on 365 days, counting the days with 9 or more
boys (as an unordered event).

One of the students who had used theoretical mathematics incorrectly produced
a spreadsheet simulation in Excel that for one year found extreme results occurring
for a 15-baby hospital on 118 days, a 30-baby hospital on 68 days, and a 45-baby
hospital on 36 days. For high school students learning to use spreadsheets as part of
mathematics or information technology courses, this would be an excellent project.
The PhD student noted above wrote a Mathematica script to simulate a year’s daily
births at each hospital. Running this program to simulate 1000 years produced
average values of 42.7 days for the large hospital and 110.6 days for the small
hospital for the extreme results. These procedures, although impressing the
students, also made them appreciate the need to be able to understand and construct
such algorithms, not just produce them as finished products. In the end, based on
their own experiences and the case study, all students agreed to the importance of
using some kind of simulation in conjunction with the theoretical mathematics for
the hospital problem. In terms of using the problem at school level (except for the
highest level senior course in Tasmania), it was considered imperative to use
sampling methods as high level formal mathematics was not available as a tool.

Although, as noted, a few senior secondary students would be able to solve the
hospital problem using the normal approximation to the binomial, most high school
students would require skills working with fractions, percents, and basic
independent probability calculations to confirm the intuitive solution suggested by
simulations. The problem hence provides an excellent opportunity to reinforce these
skills in an applied setting. The BTeach students supported this suggestion based on
the solutions they saw their classmates present and the difficulties some of them
experienced.
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Conclusion
For people preparing to be mathematics teachers it is disappointing that so few

naturally mixed intuition with an attempted mathematical justification in solving
the hospital problem. The case study setting of a school class provided an excellent
opportunity to discuss this point, as well as the mathematics teachers’ role in
modelling the relationship between intuition and justification. It is essential that
preservice mathematics education programs provide students with problem
situations where erroneous conclusions may result, either due to natural intuition
without previous mathematical experience or due to faulty calculations without
intuition. This is true not only for chance and data but also for other parts of the
mathematics curriculum. Not always will the same problem provide both
opportunities. The hospital problem is particularly effective in this regard because
of the extremes possible in terms of the complexity of solutions that can be created.
Problems like this should reinforce the importance of both types of problem solving
tools: intuitive and mathematical. It is only when one has both that one can be sure
that the solution makes sense. 
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