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By considering the example of proving the triangle postulate, this study aimed to explore Hong 
Kong preservice and novice teachers’ knowledge competencies and their beliefs about preformal 
and formal proofs. The findings revealed that such teachers are not proficient in using preformal 
proofs and do not realize that preformal proofs are a useful tool for connecting abstract geometrical 
concepts with concrete meanings. We conclude by providing strategies for teachers to use prefor-
mal proofs effectively in their teaching of geometric propositions. 
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Introduction 
Among the various types of proofs in mathematics, proofs on geometric propositions are the 
most popular in secondary school syllabi. For example, the proposition: the sum of the (interior) 
angles of a triangle is equal to 180°, also known as the triangle postulate (Weisstein, 2003, p. 2147), 
acts as a foundation in Euclidean geometry and is fundamental to the Hong Kong secondary 
mathematics curriculum for geometry. Through the instruction of the triangle postulate, stu-
dents are expected to attain a more sophisticated level of geometric thinking. Concerning this, 
Crowley (1987) commented the following: 

Too often, geometry is taught in a mechanical way. Consider the fact that the sum of the angles of 
a triangle is 180°. Frequently, this fact is established by generalizing after measuring the angles of 
a few triangles, or worse, students are simply told the information. (p. 13) 

Crowley (1987) further indicated that students could understand a geometric property both 
inductively and deductively and that they could develop geometric proficiency by proving a 
geometric property through a nonstandard proof based on tessellations. However, studies have 
indicated that students may find proof and proving difficult to learn (Cabassut et al. 2012; Drey-
fus, 1999; Küchemann & Hoyles, 2001a) and that teachers find it difficult to teach (Clausen-May, 
Jones, McLean, & Rowlands, 2000; Author, 2014; Author, 2008; Tatto et al., 2012).  

To investigate why students have difficulties understanding, appreciating and formulating 
proofs, Harel and Sowder (1998) developed proof schemes to map students’ cognitive schemes of 
proofs. Further research revealed that teachers’ beliefs and behaviour might shape students’ 
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proof schemes (Harel & Sowder, 2007) and influence students’ responses in geometric reason-
ing (Küchemann & Hoyles, 2001b; Diezmann, Watters, & English, 2002). Assuming that teach-
ers’ professional knowledge influences students’ achievements (Hill, Rowan, & Ball, 2005; Tatto 
et al., 2012), effective teaching of geometric properties may result in effective learning and the 
development of deductive reasoning and analytical proof skills among students (Poon & Leung, 
2016). Studies have shown that implementing preformal proofs in teaching practice may con-
tribute to students’ learning (Blum & Kirsch, 1991; Van Asch, 1993). Thus, teachers’ knowledge 
regarding applying preformal proofs can enhance the effectiveness of their proof teaching skills, 
in which teacher education plays a critical role. 

The employment of preformal proofs in mathematics lessons benefits not only students’ 
learning and understanding but also teachers’ professional development. Apart from 
knowledge of various mathematical theorems in the curriculum, Niss (2003), and Niss and 
Højgaard (2011) have indicated that a competent mathematics teacher should be able to excel in 
(i) mathematical thinking, (ii) posing and solving mathematical problems, (iii) mathematical 
modelling, (iv) mathematical reasoning, (v) mathematical representation, (vi) mathematical lit-
eracy and its formalism, (vii) mathematical communication, and (viii) mathematical aids and 
tools. Because they may demonstrate limited understanding of proof (Cabassut et al., 2012; Au-
thor, 2016; Knuth, 2002), teachers are encouraged to improve their mathematical competency 
through the utility of proofs in classrooms and simultaneously enrich their conceptions of 
proofs by implementing preformal proofs. It is expected that their mathematical and pedagogi-
cal knowledge can be strengthened. 

In sum, we note a need for developing students’ reasoning skills. By learning the proofs of 
geometric properties, students’ deductive reasoning and analytical skills can be developed. We 
believe that teachers who implement mathematical learning through proofs may provide more 
opportunities and establish a suitable learning environment for students’ exploration. If stu-
dents have empirical difficulty in initiating a proof, teachers must use preformal proofs as an 
illustrative tool to scaffold initial ideas for formal derivations. 

Theoretical Background 

Preformal proofs versus formal proofs 
Bruner (1966) noted that students’ intelligence could be developed through the usual course 
from enactive through iconic to symbolic representation. The iconic representation reflects the 
intuitive idea, and symbolic representation constitutes the abstraction of such an idea. Howev-
er, one’s ability to represent a mathematics idea does not necessarily constitute mastery of the 
knowledge: this mastery involves deductive argument and logical derivation of mathematical 
concepts. In other words, this involves a leap from students’ intuition of a mathematical propo-
sition to be learnt to its mathematical justification, that is, a proof. According to Hilbert (1927, 
1967), a mathematical proof—or a formal proof—is a sequence of well-organised assertions, in 
which each of the assertions is a logical axiom, a member of the sequence, or a result of apply-
ing the inference rule to some previous member. To connect students’ understanding of a rough 
concept to a formal proof and to narrow the gap between students’ intuitions and the formal 
proofs of this knowledge, an intermediate step, namely the preformal proof—a preliminary, logi-
cal, and insightful, but prematurely constructed idea or illustration that eventually hints to a 
formal proof—may be introduced. In analogue of Bruner’s assertion, this preformal proof can 
be exhibited in the sequence of understanding an argumentation when proving a proposition or 
conjecture: 
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Enactive – Intuition – Preformal proof ↔ Formal proof 

Here preformal and formal proofs are not necessary in a proper order of learning. Learners 
may think of the formal proof from intuition, and generate the preformal proof at the later stage 
of learning. 

Lakatos (1978) introduced the term preformal proof. He distinguished between informal 
and formal proofs and further divided informal proofs into preformal and postformal proofs. 
Moreover, he revealed the importance of preformal proofs as the base and source for mathema-
ticians in choosing the appropriate formal axioms to construct formal proofs (Bayat, 2016). Blum 
and Kirsch (1991) then systematically defined a preformal proof as ‘a chain of correct, but not 
formally represented conclusions which refer to valid, non-formal premises’ (p. 187). Preformal 
proofs are purposely presented in a manner that is ‘as obvious and natural as possible’ (p. 186). 
A preformal proof is a type of premature construction, rough sketch, draft tabulation, schematic 
imagery, or real object demonstration for establishing a relationship between variables. Howev-
er, it is insufficiently mature to constitute a formal proof comprising logical arguments and rea-
soning. Reid (1993) applied the term preformal not only to proofs but also to proving (the pro-
cess). He suggested that despite deficits in formal language and the explicit rules of inference, 
the reasoning behind preformal proofs fulfilled logical principles. More importantly, Reid indi-
cated the necessity, but not the sufficiency, of a preformal proving ability as a prerequisite for 
formal proving ability. 

Fujita, Jones, and Yamamoto (2004) asserted that to work on a proof exercise in geometry, 
students had to develop their geometrical intuition, which is ‘a skill to create and manipulate 
geometrical figures in the mind, to see geometrical properties, to relate images to concepts and 
theorems in geometry, and decide where to start when solving problems in geometry’ (p. 5). 
Preformal proofs can be generic, pragmatic, or visual proofs (e.g. proofs without words; Miller, 
2012) and may be implemented as tools to assist students in understanding a proof and stimu-
lating their cognitive activity and geometrical intuition by building their visual and empirical 
foundations for higher levels of geometric thought (Battista & Clements, 1995). 

In mathematics learning, a preformal proof may serve as a stimulus or hint which eventful-
ly leads to the complete structure of a formal proof. By contrast, a potentially effective construc-
tion of a formal proof requires a well-structured preformal proof. In other words, a preformal 
proof acts as a metaphoric simplification, a simplified illustration through a simple metaphor, 
of its corresponding formal proof. The following schematic diagram shows the interconnection 
between types of proof: 

 
For example, a preformal proof of the triangle postulate involves tiling the interior angles of a 
triangle, which is a visual simplification of its corresponding formal proof and demonstrates the 
equality of the alternate angles under parallelism (Figure 1). By contrast, the formal proof pro-
vides a reference base to justify the preformal proof. In practice, a proficient teacher who can 
apply various preformal proofs may develop diverse approaches to formal proofs; however, a 
teacher who masters different formal proofs may simplify and modify them into various pre-
formal proofs to aid students’ learning. Figure 1 compares the corresponding steps in the two 
types of proof: 

Preformal proof 

Metaphoric simplification 

Formal proof 

Reference base 
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Step Justification of the step Claim of the step 
1  In triangle ABC, define ∠BAC = α, ∠

ABC = β and ∠ACB = γ. 
2 Guaranteed by the 1st and 5th 

postulates of Euclid’s Ele-
ments of Geometry. 

Construct at A a parallel line to BC, 
namely, x’x where x’Ax is a straight 
line. 

3  Define ∠x’AB = β’ and ∠CAx = γ’. 
4 Definitions of alternate an-

gles. 
β and β’ are alternate angles and γ 
and γ’ are alternate angles. 

5 Guaranteed by Proposition 29 
of Euclid’s Elements of Ge-
ometry. 

β = β’ and γ = γ’ 

6 Definition of a straight angle. ∠x’Ax = 180° 
7 Guaranteed by Proposition 13 

of Euclid’s Elements of Ge-
ometry. 

∠x’Ax = ∠x’AB + ∠BAC + ∠CAx = 
β’ + α + γ’ = α + β’ + γ’ 

8 Calculus and deductive rea-
soning. 

α + β + γ = 180° 

Figure 1. Preformal and formal proofs of the triangle postulate. 

Preformal proofs, visualisation and formal proofs 
A generic preformal proof can help students understand and create proofs (Leron & Zaslavsky, 
2013). When teaching the stated formal proof of the triangle postulate, teachers can provide its 
corresponding preformal proof (Figure 1) to demonstrate the equality of the alternate angles 
that leads students to derive the proof. In other words, given the statement of triangle postulate, 
the preformal proof provides a clue to students that the formal proof requires a partition (a tile 
of pieces adding up to form the whole) of the three interior angles, which eventually prompts 
the construction of a line parallel to a side of the triangle. 

The potential contribution of visual imagery in mathematics learning has been debated for 
several decades (Dreyfus, Nardi, & Leikin, 2012; Nardi, 2014). For example, visualised prefor-
mal proofs are often criticised for being merely examples and therefore too specific to be used 
for general proofs (Nardi, 2014, p. 209). However, preformal proofs may be presented without 
loss of generality. Whiteley (2009) supported the visuality of preformal proofs because these can 
stimulate students’ imagination of a range of variations of the figure by presenting a single im-
age. Studies have also indicated that teachers and university students tended to agree that visu-
al reasoning tasks can promote and enhance students’ conceptual understanding, particularly 
for inexperienced learners and visual thinkers (Nardi, 2014; Natsheh & Karsenty 2014). In their 
study on 31 preservice elementary teachers, Stewart and Hadley (2014) stated that vivid visuali-
sation abilities tended to positively correlate with pedagogical mathematics content knowledge 
in geometry; however, the correlation was nonsignificant. 

Preformal proofs can provide students with less abstract and more directly linear logic by 
helping them grasp the concept through observation. However, Blum and Kirsch (1991) empha-
sised that preformal proofs are no simpler in terms of their references and lengths (step-size) 
than their corresponding formal proofs, especially if experienced mathematicians present a 
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shorter and more sophisticated proof. Therefore, formal proofs remain essential in proving 
mathematical propositions and developing students’ advanced deductive reasoning capability. 
This is echoed by Balacheff (2010): 

[The] answer to the question: “Can one learn mathematics without learning what a mathematical 
proof is and how to build one?” is “No” (p. 115). 

Preformal and formal proofs in mathematics teacher education 
Intuitively, presenting a preformal proof to students does not spontaneously help them to un-
derstand or create the corresponding proof. Teacher instruction is required to provide narrative 
arguments and explanations for students to build connections between preformal and formal 
proofs. Harel and Sowder (1998) stated that ‘writing a mathematical argument appears to re-
quire instruction’ (p. 278). Therefore, teachers should possess professional knowledge, such as 
proficiency of identifying different proof structures (preformal and formal), proficiency of 
knowing and executing alternative proofs, and the ability to recognise or establish connections 
between various mathematical knowledge domains (Author, 2008). By using preformal proofs, 
teachers can help students go beyond empirical proof schemes (Harel & Sowder, 1998, 2007) 
and enable them to write formal proofs with mathematical reasoning. 

Teachers’ beliefs and values regarding argumentation and proof also reflect and affect their 
competency and performance in classroom practice. Teachers who value the importance of ar-
gumentation and proof likely prepare more activities for students that provide experience of 
proofs and proving. In addition, teachers’ beliefs influence their acceptance of different ap-
proaches to proofs. Biza, Nardi, and Zachariades (2009a, 2009b) indicated that certain teachers 
accepted a visual argument used for refuting a statement but not for proving it. Mathematical 
knowledge, pedagogical knowledge, and beliefs on argumentation and proof are interrelated. 

To evaluate teachers’ knowledge regarding proof teaching, Lin et al. (2012) proposed three 
central components: (i) teachers’ knowledge of proofs (mathematical knowledge), (ii) the prac-
tice of proofs [pedagogical content knowledge (PCK)], and (iii) beliefs about proofs (views). In 
addition to general knowledge needed to teach mathematics, mathematics teachers should also 
acquire specific knowledge for teaching proofs (e.g. an understanding of the content of a proof, 
knowledge for justifying whether certain methods are valid, and the ability to validate students’ 
proofs). Teachers’ practice of proofs designates the type of proving activities that teachers im-
plement in their classes to facilitate proof learning. In this study, we were concerned with 
teachers’ views on proof and proving in their classroom instruction. 

As an exploratory project, we were inspired by the aforementioned scholars’ theories to in-
vestigate the preparedness of preservice and novice teachers (novice teachers are those without 
qualified teacher status who are teaching under the administration of school senior manage-
ment; i.e. a nonlicenced teacher) for applying preformal proofs in mathematics teaching.  

Research questions 
Our study was focused on investigating preservice and novice teachers’ views on the roles of 
preformal and formal proofs in geometry, with the triangle postulate as an example, and corre-
lations between their views and backgrounds. This study explores the correlation between the 
implementation of preformal proofs and teachers’ knowledge and beliefs on teaching proofs 
and proving. The findings can act as a reference for curriculum reform in mathematics teacher 
education. Based on the studies mentioned above, we formulated the following research ques-
tions within the prescribed scope: 
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1. How do preservice and novice teachers view preformal and formal proofs, given their 
knowledge of proofs, practice of proofs, and beliefs of proofs? 

2. What are the features among teachers’ backgrounds, particularly their mathematical 
and pedagogical knowledge and teaching experience, that may influence, affect, or 
dominate their preferences for preformal and formal proofs? 

Methodology 

Participants 
In our study, the test instrument contained tasks regarding the preformal and formal proving of 
the triangle postulate. The questionnaires were delivered to 79 preservice and novice teachers, 
and 72 completed responses were returned. The respondents were students of teacher training 
programmes, in either their third or fourth year of undergraduate study in mathematics educa-
tion or pursuing a postgraduate diploma in education with a major in mathematics. All re-
spondents were from four universities in Hong Kong. The postgraduate respondents had al-
ready completed their undergraduate study, having majored in either mathematics or a math-
ematics-related subject such as engineering. A number of them were novice teachers or teaching 
assistants in secondary schools, and thus, they were enrolled in part-time programmes for a 
postgraduate diploma. For undergraduate and full-time postgraduate respondents, we ex-
pected that they would pursue a career in secondary school education after graduation. Table 1 
presents the demographic variables. For a deeper understanding, we defined respondents’ 
teaching experiences as classroom experiences such as regular lesson instruction and student 
teachers’ practicums in mathematics at schools. 

Table 1 
Demographic variables of the respondents (n = 72) 

 Undergraduate Postgraduate  
 M F M F Total 

Teaching exp. 9 4 20 10 43 
No teaching exp. 10 3 13 3 29 
Total 19 7 33 13 72 

Remark: Teaching experience indicated teaching or practicum in a regular class at school. 

The respondents were asked to complete a questionnaire with open-ended questions by com-
menting on three preformal proofs of the triangle postulate and were requested to formulate a 
corresponding formal proof. They were also asked to express their views and beliefs on proofs 
in secondary school mathematics. Containing six questions, the questionnaire covered several 
teachers’ knowledge domains of preformal proofs and proving as outlined in the Theoretical 
Background section. 

Questionnaire 
Figure 2 depicts the task under evaluation. Before respondents responded to the questionnaire, 
three preformal proofs of the triangle postulate were introduced: preformal proof (a), presented 
in most of textbooks in France1 as well as Hong Kong2 as an exploratory in-class activity; pre-
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formal proof (b), sharing the concept proposed by Crowley (1987) regarding tessellations; and 
preformal proof (c), a paper-folding method described by Johnson (1999). 
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Item Set 3 
Complementary approaches: formal – preformal proof about the angle sum of triangle.  
Consider the following three approaches. All three methods are called preformal proof to the 
proposition:  

“Angles’ sum of a triangle is equal to a straight angle”. 
(a) Tiling on the straight line – cutting the interior angles and tile them onto a horizontal 

straight line to make it a straight angle 

  
(b) Tiling of triangles – duplicate a given triangle into two more identical triangles by vari-

ous transformation: rotation and translation, then tile them onto a straight line: Vertices 
A’, B” and C will meet at one point on the line AC’. 

 

 
(c) Paper folding – Starting with a piece of triangular paper. A straight line is drawn from 

B to B’ on the base AC. The vertices A, B and C are folded respectively to meet at B’. 
The tree angles will then tile at B’ on the line AC. 

 

Figure 2. Item questions of preformal proofs of the triangle postulate. 
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These preformal proofs can be classified as action proofs because they involve placing all interi-
or angles of a triangle on a straight line at a common vertex, resulting in a straight angle (Blum 
& Kirsch, 1991). Although the assumption that ‘transformations such as reflection, rotation and 
translation, preserve the geometrical properties of a figure, in particular, the value of an angle’ 
(Fischer, 2014) is shared by these preformal proofs, they involve different procedures that re-
quire various cognitive abilities, which may suit students at different learning stages. Specifical-
ly, preformal proofs (a) and (c) require students to observe the preservation of the angle size 
after tearing off or folding the corners; equivalently, students should have reached Piaget’s 
stage of concrete operations, in which changing the shape of the figure does not change its 
measure (Kolb, 1984; Malerstein & Ahern, 1979). However, preformal proof (b) requires a visual 
understanding of congruent triangles and the concept of (equal-valued) corresponding angles. 
Through preformal proofs, teachers can enhance their pedagogical strategies by providing stu-
dents with multiple activity-based learning opportunities for proofs to help students develop 
logical thinking and creativity in geometry (Arici & Aslan-Tutak, 2015; Bostic, 2016; Coad, 2006; 
Levav-Waynberg & Leikin, 2012; Ojose, 2008). 

Regarding the preformal proofs in Figure 2, the respondents were asked the following ques-
tions, based on those of Author (2008): 

Q1. Which of the above methods/approaches is (are) sufficient proof(s) for you? (You 
accept that it is a proper proof of the proposition). Please give a short explanation. 

Q2. Formulate a formal proof for the proposition. 
Q3. Which kind of proofs (between preformal proofs ((a), (b), (c)) and formal proof you 

showed in Q2) would you use in your mathematics lesson? Please explain your po-
sition. 

Q4. In a mathematics lesson, do you think preformal proof (any one of the above three 
methods) is sufficient? Please explain. 

Q5. Name the advantages and disadvantage of preformal and formal proof. 
Q6. How do you think about the meaning of mathematical proofs in a lesson? 

Data analysis 
The analytical method used to analyse the written responses was adapted from the deductive 
category application designed by Mayring (2000) and modified by Author (2008). Several crite-
ria were predefined before data analysis to devise a specific structure. A coding manual, com-
prising definitions, typical examples of responses, and coding rules, was then constructed to 
analyse and code the data (i.e. to assign the data according to the predefined evaluation catego-
ries). Quantitative analyses were subsequently conducted according to the frequency. 

Analysis of Responses 
The foci of this study were teachers’ knowledge of proofs, practice of proving, and beliefs about 
proofs. Respondents’ views on preformal proofs were analysed by considering (i) their ac-
ceptance of the presented preformal proofs (i.e. the validity of the preformal proofs) and (ii) 
their preferred types of proofs in a classroom setting (i.e. practice of proofs). Regarding the rea-
sons for consideration, their responses were further subcategorised as (a) concerns of student 
learning, (b) practical concerns, (c) mathematical content concerns of the proofs, (d) concerns of 
the natures of preformal proofs (e.g. visualisation and pragmatics), and (e) concerns of students’ 
attitudes (affection). Frequencies of the categorised considerations were counted to examine the 
tendencies of considerations when the respondents reflected on teaching and learning prefor-
mal proofs (Appendix 1). 

Moreover, respondents’ views on proofs (beliefs about proofs) were examined by categoris-
ing their reflections on the meaning of proofs in a classroom setting, regarding whether they (a) 
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consider proofs as a justification to convince students, (b) appreciate the nature of proofs as a 
key element of learning mathematics, (c) consider that learning proofs can help students’ cogni-
tive development and logical reasoning, (d) consider that learning proofs can consolidate stu-
dent mathematical learning and understanding of certain topics, (e) consider that learning 
proofs is a supplement to the school curriculum, and (f) deny any advantage of teaching and 
learning proofs (Appendix 1). 

Scales for Respondents’ Knowledge of Proofs, Practices of Proofs, and Beliefs about Proofs 
To investigate teachers’ knowledge of proofs by restricting our analysis to school mathematics, 
we developed a coding manual focusing on teachers’ abilities (i) to identify both differences and 
similarities between preformal and formal proofs, (ii) to justify the validity of the proposed pre-
formal proofs, and (iii) to develop a formal proof by referencing the preformal proofs presented. 
An ordinal scale was also constructed, ranging from 0 (respondent does not demonstrate any 
above-mentioned ability while responding to the items) to 6 (respondent demonstrates all abili-
ties; Appendix 2). 

For teachers’ practice of proofs, regarding the implementation of preformal proofs in class 
settings, we constructed another ordinal scale to examine (i) teachers’ preference for proving 
activities and (ii) their acknowledgement that implementation of preformal proofs can benefit 
student learning. A respondent could achieve a score of 8 by adapting all preformal and formal 
proofs to mixed teaching strategies. The scale also identified teachers’ pedagogical knowledge 
about preformal proofs: (a) preformal proofs can provide opportunities for visual and pragmat-
ic learning, (b) preformal proofs can cater to inexperienced or less capable students, and (c) pre-
formal proofs can serve as a stepping stone to facilitate the development of students’ higher-
order thinking skills (Appendix 2). 

Because of the affective feature of teachers’ beliefs about proofs and the cognitive compo-
nents of beliefs, an ordinal scale was defined to indicate the degree of their agreement and re-
fusal with teaching mathematical proof and proving. The scale ranges from −2 (respondent re-
fuses to teach proofs or denies any positive impacts of learning proofs on student development) 
to +2 (respondent advocates teaching and learning proofs; Appendix 2). 

In our study, information on the respondents’ academic backgrounds was also collected to 
examine the pairwise correlations between their backgrounds, knowledge of proofs, practice of 
proofs, and beliefs about proofs. Respondents’ academic backgrounds included (a) mathematics 
courses and (b) mathematics education courses (Appendix 3). 

Results and Findings 

Knowledge of proofs and practices of proofs 
The structural associations between the different components of novice and preservice teachers’ 
knowledge in Hong Kong are described as follows: Q1 aimed to examine the respondents’ 
judgements on the acceptance of the three preformal proofs of the triangle postulate (general 
results in Table 2). All methods received approximately half of the respondents’ acceptance and 
yielded similar results overall. The chi-square tests of independence were performed to examine 
the pairwise relationships among the acceptances of the three approaches to preformal proofs. 
A significant relationship was noted between the acceptances of preformal proofs (a) and (b) (χ2 
= 32.56, p < 0.001), (a) and (c) (χ2 = 22.77, p < 0.001), and (b) and (c) (χ2 = 22.77, p < 0.001). Thus, 
the preservice teachers who accepted any one of three preformal proofs tended to accept the 
others as well. 
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Table 2 
Acceptances of three approaches to preformal proofs (frequency counts out of n = 72) 

 Accept Reject Blank/Indecision 
(a) Tiling on straight line 37 (51.4%) 13 (18.1%) 22 (30.6%) 
(b) Tiling of triangles 36 (50.0%) 13 (18.1%) 23 (31.9%) 
(c) Paper folding 38 (52.8%) 13 (18.1%) 21 (29.2%) 

 
Table 3 lists the reasoning behind the responses. For thematic concerns, the responses were di-
vided into six categories regarding (a) student learning, (b) practical concerns, (c) mathematical 
content of the proofs, (d) physical natures of the proofs (e.g. visualisation and pragmatics), (e) 
students’ attitudes towards learning proofs and mathematics (affection), and (f) other or unre-
lated concerns. 

The results indicated that the respondents tended to accept the preformal proofs because 
they can visually or pragmatically demonstrate the proposition of the triangle postulate, but 
they tend to consider practical issues (e.g. overlapping when placing three angles together) 
when rejecting the proofs. In addition, several respondents denied the generalisability of the 
preformal proofs. Table 3 shows respondents’ considerations.  

None of them is a sufficient proof for me. They only show that some Δ [exists, and] the angles 
sum = 180○. They are [in]sufficient to prove that all Δs’ angle sum = 180○. [#48, coded mathemati-
cal content concerns of the proofs (M).] 

As a secondary school teacher, or a university student, none of the above method[s] is sufficient. 
However, [from] secondary school student’s perspective, all of them are intuitively acceptable 
[because] their rigor[ous] reasoning ability [has] not [been] well-developed yet. [#65, coded con-
cerns of student learning (L), and physical natures of the proofs (PN).] 

Table 3 
Reasons for acceptances or rejections of three approaches to preformal proofs 

 SL P MC PN A Other/unrelated 
(a) Tiling on straight line       

Accept 8 4 4 28 2 2 
Reject 0 7 5 1 0 1 

(b) Tiling of triangles       
Accept 4 4 14 22 3 1 
Reject 1 1 4 1 0 1 

(c) Paper folding       
Accept 6 5 8 23 2 1 
Reject 0 8 4 1 0 0 

 
Q2 did not require advanced mathematical knowledge, such as a thorough understanding of 
proofs from undergraduate to advanced levels, but it required a type of knowledge called 
‘mathematics for high schools from an advanced perspective’ (Usiskin, Peressini, Marchisotto, 
& Stanley, 2003; Buchholtz et al. 2013). For Q2, the preservice teachers were asked to formulate 
a formal proof for the following mathematical proposition: ‘(Interior) angles’ sum of a triangle 
is equal to a straight line’ (i.e. the triangle postulate), which is Proposition 1.32 in Euclid’s Ele-
ments (Fitzpatrick, 2007, p. 34). To complete this task adequately, elementary geometrical prop-
ositions, namely Propositions 1.13, 1.29, and 1.31 in Euclid’s Elements (Fitzpatrick, 2007, pp. 34–
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35) 3  and competencies in the systematic formulation of a formal proof in mathematical 
knowledge, are required. 

Table 4 
Approaches of formal proof formulation (Q2) 

Attempts (n = 65) Visually assisted Deductive proof Incomplete proof Unsuccessful 
Frequency 53 29 14 22 
% out of attempts 81.5% 44.6% 21.5% 33.8% 

 
Because some respondents misinterpreted the task or left a blank space, 65 valid attempts 
(90.3% of the 72 respondents) were considered. The results that 44.6% of the participants could 
formulate a deductive proof corroborated the study by Author (2008), in which 42.7% of the 
preservice teachers from Hong Kong could formulate a formal proof for the proposition in the 
task (i.e. coded +1 or +2 responses; ibid., p. 798). Moreover, 53 respondents attempted this task 
by sketching a figure as a visual assistance or illustration. Figure 3 shows example responses. 

 

Figure 3. Example responses to Q2 (left: a deductive proof; right: an unsuccessful attempt). 

In addition, qualitative content analysis was conducted to determine the preservice teachers’ 
preferred approaches to formulating a formal proof of the triangle postulate. Of the 65 respond-
ents, 42 (64.6%) attempted to formulate a proof by constructing a parallel line to one side of the 
triangle passing through the remaining point and applying the properties of the angles related 
to parallel lines. However, three respondents attempted to apply the proposition ‘The sum of 
the exterior angles of a convex polygon is a round angle (four right angles)’ to formally prove 
the triangle postulate, and one could provide a brief justification for using the concept of limit 
to validate this proposition prior to applying it. Here, the use of the concept of limit reflects that 
a formal proof of the triangle postulate is also a consequence of tiling the exterior angles at a 
singleton point (Figure 4). 
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Figure 4. Example response to Q2 (incomplete proof), the property of exterior angles is used. 

Among the 22 unsuccessful attempts, six simply restated one of the preformal proofs in the 
questionnaire without justification, three involved circular arguments, five attempted to verify 
or measure the sum of the angles of particular triangles, six left spurious or irrelevant com-
ments, including ‘no formal proof’, ‘I don’t know’, and ‘I forget’ and the remaining identified 
incorrect pairs of alternate angles of parallel lines. These responses revealed the respondents’ 
below-average competencies in knowledge of proofs with respect to understanding what con-
stitutes a proof, specifically the deduction of a formal proof and its formulation. 

The results for Q3 and Q4 were related to respondents’ practice of proofs, specifically tar-
geting preformal proofs and proving, and their connection with formal proofs in classroom set-
tings. Notably, because respondents were allowed to provide reasons with various considera-
tions (different reasons of the same type of consideration were counted as a single type), the 
number of reasons exceeded 72 (the total number of respondents). In addition, blank responses 
were not considered. 

In Q3, respondents were asked to provide their preferred presented proof and teaching 
strategies for teaching the triangle postulate in a classroom setting. Table 5 shows respondents’ 
preferred proofs in terms of their demographics. The results indicated that the majority of re-
spondents (58.3%) selected preformal proof (a) for their triangle postulate teaching strategy. 
Furthermore, despite visible differences between percentages, no significant relationship was 
found between respondents’ preferences for formal proof and their teaching experience (χ2 = 
2.04, p = 0.154), their preference for preformal proof (c) and their teaching experience (χ2 = 1.22, 
p = 0.269), or their preference for preformal proof (c) and their education (χ2 = 1.05, p = 0.305). 
Three additional responses were found (coded ‘other’), two of which involved refusal to teach 
proofs and one stated a preference to measuring angles. 

Table 5 
Respondents’ preferences for specific proofs in classroom settings 

 (a) Tiling on 
straight line 

(b) Tiling of 
triangles 

(c) Paper fold-
ing 

(d) Formal 
proof 

(e) Other 

Postgrad 26 (56.5%) 13 (28.3%) 19 (41.3%) 17 (37.0%) 1 (2.2%) 
Undergrad 16 (61.5%) 10 (38.5%) 14 (53.8%) 10 (38.5%) 2 (7.7%) 
Teaching exp. 23 (53.5%) 13 (30.2%) 22 (51.2%) 19 (44.2%) 3 (7.0%) 
No teaching exp. 19 (65.5%) 10 (34.5%) 11 (37.9%) 8 (27.6%) 0 (0.0%) 
Total 42 (58.3%) 23 (31.9%) 33 (45.8%) 27 (37.5%) 3 (4.2%) 

Remark: The percentages are based on the categories (e.g. Postgrad n = 46, Table 1). 
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For Q4, the respondents were asked to justify the sufficiency of using preformal proofs alone in 
classroom settings. Table 6 reveals that most respondents (63.9%) agreed that preformal proofs 
can be used alone for teaching the triangle postulate, whereas the remainder insisted on teach-
ing formal proofs because of the lack of rigor provided by preformal proofs for student’s cogni-
tive development. In addition, one respondent claimed, ‘I have never thought about it’. Fur-
thermore, despite a visible difference, the relationship between respondents’ acceptance of us-
ing preformal proofs alone in classroom settings and their teaching experience was nonsignifi-
cant (χ2 = 1.53, p = 0.216). 

Lack of logical thinking is a flaw concerning advanced mathematical education. [#77] 

Via preformal proofs, abstract theorems are more acceptable to students. However, mathemati-
cally speaking, rigorous proofs and algebraic deduction are important. [#79] 

Table 6 
Respondents’ views on using preformal proofs alone in classroom settings 

 Accept Reject 
Postgrad 29 (63.0%) 17 (37.0%) 
Undergrad 17 (65.4%) 9 (34.6%) 
Teaching exp. 25 (58.1%) 18 (41.9%) 
No teaching exp. 21 (72.4%) 8 (27.6%) 
Total 47 (63.9%) 25 (36.1%) 

Remark: The percentages are based on the categories (e.g. Postgrad n = 46, Table 1). 

On combining the responses of Q3 and Q4, we noted that 23 respondents (31.9%) indicated that 
they would teach the triangle postulate along with the mixed strategies of adapting both pre-
formal and formal proofs, whereas 20 indicated that they would implement a strategy of ‘first 
preformal proof(s), then formal proof(s)’. (Table 7) Furthermore, the adaptation of both prefor-
mal and formal proofs tended to correlate with respondents’ teaching experience (r = 0.259, p < 
0.05; Table 11). 

Table 7 
Respondents’ strategies of teaching the triangle postulate 

 Preformal first Formal first Undecided Sum 
Postgrad 13 (28.3%) 1 (2.2%) 1 (2.2%) 15 (32.6%) 
Undergrad 7 (26.9%) 0 (0.0%) 1 (3.8%) 8 (30.8%) 
Teaching exp. 16 (37.2%) 0 (0.0%) 2 (4.7%) 18 (41.9%) 
No teaching exp. 4 (13.8%) 1 (3.4%) 0 (0.0%) 5 (17.2%) 
Total 20 (27.8%) 1 (1.4%) 2 (2.8%) 23 (31.9%) 

Remark: The percentages are based on the categories (e.g. Postgrad n = 46, Table 1). 

In addition, to perform a holistic investigation, respondents’ considerations for responses 
among the first five items (Q1–5) were analysed. The reasons were categorised as (a) student 
learning, (b) practical concerns, (c) mathematical content (particularly respondents’ rejection of 
the generalisation power of preformal proofs), and (d) students’ attitudes towards learning 
proofs and mathematics (affection). All responses could be categorised into at least one of the 
above categories. Thus, no other category was required. Despite nonsignificant results (p ≥ 0.05), 
an association was revealed between respondents’ teaching experience and responses of practi-
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cal concerns (r = 0.200, p = 0.0917; Table 11). Furthermore, we found that 20 respondents (27.8%) 
rejected or doubted the generalisation power of the preformal proofs. 

Q1: I may wonder [whether] only this triangle [works], how about [the] other[s]? Q3: (a) since 
formal proof may not [be understood by] all students, (b) need[s] more resource[s], (c) may not 
apply for all types of triangles, just like (a right triangle). Q4: Yes, some concept[s] [are] only suit-
able [for observation] by students. Formal proof[s] may be too difficult for them to understand. 
[#25, coded concerns of student learning (SL), practical concerns (P), mathematical content con-
cerns (MC), and the rejection of the generalisation power of preformal proofs.] 

Table 8 
Considerations for responses among Q1–5 

 SL P MC Reject gen. A 
Postgrad 45 (97.8%) 31 (67.4%) 42 (91.3%) 14 (30.4%) 17 (37.0%) 
Undergrad 23 (88.5%) 17 (65.4%) 21 (80.8%) 6 (23.1%) 10 (38.5%) 
Teaching exp. 40 (93.0%) 32 (74.4%) 38 (88.4%) 11 (25.6%) 14 (32.6%) 
No teaching exp. 28 (96.6%) 16 (55.2%) 25 (86.2%) 9 (31.0%) 13 (44.8%) 
Total 68 (94.4%) 48 (66.7%) 63 (87.5%) 20 (27.8%) 27 (37.5%) 

Remark: The percentages are based on the categories (e.g. Postgrad n = 46, Table 1). 

Beliefs about proofs 
For the qualitative approach, respondents’ views on proofs are listed in Table 9. Thirty re-
spondents (41.7%) stated that learning proofs can consolidate student learning of the target top-
ic, whereas three respondents denied any benefit from learning proofs. Furthermore, Respond-
ents without teaching experience tended to express more appreciation for the natures of proofs 
(r = −0.249, p < 0.05). 

[Learning proofs is] not much useful. Whenever my teachers taught this, we did not listen. I do 
not believe that students will listen to the explanation of proofs in the lessons. [#58, coded deny-
ing of benefit from learning proofs (N).] 

In junior form, proofs and explanations should be easier, in order to make the students to grasp 
the concept clearly and not to ruin their interest and sense of failure in maths; in senior form, the 
students become more mature, so we can explain the maths content in a deeper way so that we 
can train their logical reasoning and thinking. [#21, coded appreciating the nature of proofs (A), 
proof for developing students’ cognition and logical thinking (D), and proof for consolidating 
student learning (C).] 

Table 9 
Respondents’ views on proofs in six categories 

 J A D C S N 
Postgrad 19 (41.3%) 15 (32.6%) 13 (28.3%) 16 (34.8%) 5 (10.9%) 2 (4.3%) 
Undergrad 8 (30.8%) 5 (19.2%) 5 (19.2%) 14 (53.8%) 1 (3.8%) 1 (3.8%) 
Teaching exp. 16 (37.2%) 8 (18.6%) 12 (27.9%) 17 (39.5%) 5 (11.6%) 3 (7.0%) 
No teaching exp. 11 (37.9%) 12 (41.4%) 6 (20.7%) 13 (44.8%) 1 (3.4%) 0 (0.0%) 
Total 27 (37.5%) 20 (27.8%) 18 (25.0%) 30 (41.7%) 6 (8.3%) 3 (4.2%) 

Remark: The percentages are based on the categories (e.g. Postgrad n = 46, Table 1). 
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Scales for knowledge of proofs, practice of proofs, and beliefs about proofs 
In addition to the qualitative approach, respondents’ knowledge of proofs and practice of 
proofs were examined by a construct of ordinal scales (quantitative approach). For knowledge 
of proofs, a 7-point scale (0–6) was developed regarding (a) respondents’ acceptance of each 
preformal proof, (b) their abilities to formulate a deductive proof of the triangle postulate with 
or without reference to any presented preformal proof, and (c) their knowledge of the connec-
tion between preformal and formal proofs. Respondents scored 6 if they acknowledged that all 
presented preformal proofs were valid and could formulate a deductive proof of the triangle 
postulate with recognition of the connections between preformal and formal proofs. The aver-
age score was 2.63 [standard deviation (SD) = 1.50]. 

Moreover, for the practice of proofs, a 9-point scale (0–8) was constructed regarding (a) re-
spondents’ preference for each type of presented proofs (both preformal and formal), (b) their 
preference for a mixed strategy of preformal and formal proofs for teaching the triangle postu-
late, (c) understanding that a preformal proof can provide students with visual or pragmatic 
learning opportunities, (d) understanding that a preformal proof can help less capable students 
learning, and (e) understanding that a preformal proof can act as a stepping stone for students 
to advance a higher-order thinking, particularly to facilitate logical thinking skills. Respondents 
scored 8 if they demonstrated a holistic teaching strategy including all presented proofs and 
acknowledged a range of benefits of learning (preformal) proofs. The average score was 3.01 
(SD = 1.98). 

Assuming that the respondents answered the items consistently in the questionnaire, we 
investigated respondents’ beliefs about proofs regarding preformal and formal proofs by evalu-
ating their responses to Q6 on a 5-point integral scale (−2 to +2). An elaborate positive statement 
for proof and proving with at least two aspects regarding (a) mathematical considerations and 
(b) didactical considerations was coded +2 (advocating proofs) as well as a positive statement 
containing one of these aspects was coded +1 (tendency of proofs). A statement revealing a ten-
dency for degrading proof teaching and learning was coded −1 (tendency of rejecting proofs), 
and one denying any positive meanings of proof teaching and learning was coded −2 (rejecting 
proofs). Any indecisive statement, which may be unjustified, incomprehensible, or lacking clari-
ty in meaning, was coded 0 (neutral). The average score was 0.458 (SD = 0.897). 

[The presence of proofs in the curriculum] is [to] tell them where the mathematics theorems [are 
derived] from, [to] develop their mathematics thinking. [to open] their eyes to some abstract 
maths proofs, [and] to show them [that] much effort is paid to [devising] such proofs. [#32, coded 
+2.] 

At the secondary level, mathematical proofs are complementary to student learning. Sometimes it 
is not necessary for a mathematical proof to really help students understand the topic. [#47, cod-
ed −1.] 

Pairwise Correlations (r) between Respondents’ Knowledge, Practices, and Beliefs about 
Proofs 
For deeper investigation, respondents’ views on proofs were examined regarding (a) their 
knowledge of proofs, (b) their practice of proofs, and (c) their beliefs about proofs. Pairwise cor-
relations (r) between the three aspects, and between their components were investigated (Table 
10). The results indicated moderate positive correlations among the three aspects (rKoP,PoP = 
0.423, p < 0.001; rKoP,BaP = 0.308, p < 0.01; rPoP,BaP = 0.385, p < 0.001); therefore, a respondent 
achieving high score in one scale, tended to achieve high scores in the other two. Furthermore, 
respondents tended to implement a mixed strategy of preformal and formal proofs to teach the 
triangle postulate if they had solid knowledge of proofs (rKoP,mixed = 0.282, p < 0.05). They 
acknowledged that adapting preformal proofs in classroom settings can provide students with 



Preservice and novice teachers’ knowledge on preformal proofs  Leung & Lee   
  

       MERGA  67 
 

visual and pragmatic learning opportunities (rmixed,VP = 0.241, p < 0.05), and believed that pre-
formal proofs can foster the development of student’s higher order thinking skills (rmixed,HOT = 
0.379, p < 0.01) (see Table 10). 

Table 10 
Pairwise correlations (r) between respondents’ knowledge of proofs, practice of proofs and beliefs about 
proofs 

 KoP Form P Connect PoP Mixed VP learn Less cap. HOT BaP 
KoP          
Form P          
Connect  0.251*        
PoP 0.423*** 0.353** 0.212+       
Mixed 0.282* 0.305** 0.134       
VP learn 0.057 0.190 0.163  0.241*     
Less cap. 0.066 0.074 0.009  0.176 0.009    
HOT 0.236* 0.078 0.252*  0.379** 0.220+ 0.356**   
BaP 0.308** 0.194 0.212+ 0.385*** 0.177 0.213+ 0.223+ 0.231+  

Remark: + p < 0.10. * p < 0.05. ** p < 0.01. *** p < 0.001. 

Pairwise Correlations between Respondents’ Backgrounds and Their Views on Proofs 
Moreover, respondents’ backgrounds were examined regarding (a) their teaching experience, 
and (b) their education, namely (i) mathematics courses and (ii) mathematics education courses. 
Pairwise correlations between these components were investigated (Table 11). Respondents’ 
teaching experience tended to influence their choices of teaching strategies (rTE,mixed = 0.269, p < 
0.05), their concerns about teaching and learning proofs (rTE,VP = 0.293, p < 0.05; rTE,HOT = 0.219, p 
< 0.10), and their practice of proofs (rTE,PoP = 0.235, p < 0.05). Furthermore, the results of pairwise 
correlations also indicated that respondents’ knowledge of proofs, practice of proofs, and beliefs 
about proofs may be influenced by their knowledge of mathematics and mathematics education, 
which is discussed in the following section (see Table 11). 
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Table 11 
Pairwise correlations (r) between respondents’ backgrounds and their views on proofs 

  Mathematics      Mathematics education         
 Teaching 

exp. NT Geo Algeb 
Prob & 
Stat 

Math 
analy 

No. of 
courses Curr 

Prob 
solving 

Math 
history ICT Psych 

Acti & 
games PCK 

KoP     -0.287*     0.232  0.206   
Form P          0.201    0.208 
Connect   0.233*      -0.259*      
PoP 0.235*  0.220 -0.241*   0.217    0.307**    
Mixed 0.269*   -0.324**   0.254*    0.287* 0.367**  0.211 
VP learning 0.293*              
Less cap.     -0.282*          
HOT 0.219        -0.218  0.303**  0.250*  
BaP     -0.226          
Concerns               
SL               
P          -0.216     
MC  0.274*      0.237*       
A      0.279*         

Remark: Only correlations r with p < 0.10 are presented. * p < 0.05. ** p < 0.01. 
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Summary of the findings 
In this section, we summarise our findings according to the responses of all questionnaires. In 
Q1, although we expected a competent mathematics teacher to assess the sufficiency of a pre-
formal proof mainly on the basis of its mathematical contents, such as original definition, fea-
tures, principles, properties, and implications, fewer than a half of the respondents were found 
to accept or reject a proof ‘mathematically’ (Table 3). The choice of acceptance reflects their ten-
dency to use preformal proofs under didactical considerations. 

In Q2, a high proportion of respondents (81.5%) generated a figure when attempting to 
formulate a deductive proof for the triangle postulate. This indicated respondents’ dependence 
on proving geometric propositions through a static figure of objects, whereas formal proofs re-
quire comprehensive and precise definitions of the axiomatic objects. In addition to learning 
from the preformal proofs presented, a probable explanation of the predominance of the strate-
gy of constructing parallel lines (64.6%) is that such strategy is often described and taught in 
Hong Kong textbooks under the topic of deductive geometry. Thus, further and deeper investi-
gations are required to examine respondents’ ability of deductive proof formulation by refer-
encing a preformal proof; in other words, whether the respondents have already learnt and 
adopted the proof from some textbook or developed the deduction themselves with reference to 
the presented preformal proof. 

In addition, approximately one-fourth (27.8%) of the respondents did not acknowledge that 
the preformal proofs may stimulate students to imagine a range of similar figures for generali-
sation but preferred to use a particular example. Furthermore, combined with the diverse data 
regarding knowledge of proofs (M = 2.63, SD = 1.50), the results suggested a need for im-
provement of knowledge of proofs among preservice and novice teachers. Moderate correla-
tions between knowledge of mathematics history and the scale of knowledge of proofs may in-
dicate appropriate adjustments to teacher education programmes. 

Moreover, respondents’ practices of proofs were examined. We found that although all pre-
formal proofs presented here were equally accepted, preformal proof (a) dominated the re-
spondents’ preferences (F = 1.255, p < 0.01) because of its frequent appearance in Hong Kong 
textbooks. Moreover, Table 11 indicates that respondents who acknowledged the use of infor-
mation and communication technologies (ICT) in mathematics teaching tended to demonstrate 
various teaching strategies and acknowledge the advantages of implementing preformal proofs 
in classroom settings. Acknowledging some investigations on the relationship between student 
learning and mathematics textbooks (Kwong, 2013; Leung, 2005), the relationship between 
teachers’ instruction and their use of textbooks and ICT tools in proof teaching should be inves-
tigated. Teachers’ knowledge and preferences would affect their choices of learning resources 
such as textbooks and ICT tools; however, the availability of developed learning resources may 
clarify new teaching strategies to cater for learning diversity. 

Discussion 

Relations among beliefs, practice, and knowledge about proof teaching 
Figure 5 presents a schematic of the connections between the implementation of proof teaching, 
both preformal and formal proofs, in the classroom. The arrows denote the sequential directions 
of execution, in which knowledge of proofs is the foundation. The ability to interconnect the 
preformal and formal, as described in the Theoretical Background section, reflects teachers’ 
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competency. This ability serves as a foundation for a strong belief in, and good practice for, 
teaching proofs. Good practice and strong positive belief are interdependent. 

 

Figure 5. Schematic implementation of preformal and formal proofs. 

The aim of this investigation was to assess teachers’ proficiency and affinity for various prefor-
mal proofs of the triangle postulate. In the mathematics curriculum of Hong Kong, the applica-
tion of the Euclid’s parallel postulate is a core content of the lower secondary syllabus, evi-
denced by its statement and frequent appearance in the deductive proofs of various geometric 
properties. However, its equivalence with the triangle postulate is not emphasised. The text-
book demonstrates a deduction of the triangle postulate, represented by the proposition: the 
sum of interior angles of a tringle is 180°, from the truth of parallel postulate, but omits the equiva-
lence of the two postulates.  

The approach that applied angle tiling [either exterior (Figure 4) or interior angle] is an es-
sential idea of preformal proofs. In the questionnaire, preformal proof (a) is straightforward, 
whereas preformal proofs (b) and (c) require some applications of geometric properties—linear 
transformations of a triangle in preformal proof (b) and the midpoint theorem of a triangle in 
preformal proof (c). Applying these two properties leads to the tiling of the three (interior) an-
gles, which physically illustrates the action of adding the angles’ measures. We expect that the 
participant teachers could show this step to students because the proposition requires showing 
the property of the sum of interior angles. This sum prompts the teachers and students to think 
of putting them together on a plane, which is simply a tessellation at a point. 

A preformal proof is not a synonym for an example. The tiling of the angles of a paper-
made triangle builds an image in learners’ memory that the choice of the triangle, hence, the 
three interior angles, is arbitrary. The triangle is chosen without loss of generality because the 
three angles’ measures do not affect the result of tiling and are not known in the proof. In other 
words, the triangle should be chosen arbitrarily in order for the construction of a preformal 
proof. Otherwise, the combination of fixed measures, for example, 30°, 60°, and 90°, is only a 
demonstration, an illustrative example, or merely a verification. 

Tiling three interior angles at a point on a straight line hints at the construction of a line 
parallel to the opposite base of the triangle. The participating preservice and novice teachers 
were provided with the idea of constructing a parallel line to formulate a formal proof when 
reading the picture illustration of the angles tiling in the three preformal proofs in the question-
naire. To assess teachers’ ability to use this approach in teaching a proof of geometric proposi-
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proofs 

Beliefs about 
proofs 

Knowledge 
of formal 

proofs 

Practices on 
proofs 
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tion, we argued that a qualified mathematics teacher should know the complete process of a 
formal proof of the triangle postulate because it is quite a standard foundation in Euclidean ge-
ometry. Moreover, a competent teacher is expected to be able to simplify the formal proof and 
mediate it to create a preformal proof for student learning. They can eventually lead students to 
arrive from deductive arguments to the result of the triangle postulate, which represents profi-
ciency in interconnecting preformal and formal proofs. 

‘Competency is an integrated whole of knowledge, insights, skills, and attitudes’ (Vermunt, 
2007, p. 84). A mathematically competent teacher can insightfully think of novel approaches or 
aids to deal with challenges in teaching. The three preformal proofs stated in the questionnaire 
already hinted at the construction of a parallel line in our suggested solution of proving the tri-
angle postulate. The physical cut-and-tile of the three interior angles of a triangle in those pre-
formal proofs prompted their geometrical intuition (Fujita et al., 2004). From this, the participat-
ing teachers should obtain insights into constructing a line passing through the vertex parallel 
to the opposite base. To facilitate students’ understanding of core content for those with differ-
ent learning needs, a competent teacher should obtain the insight and have the capacity to use 
aids (Niss & Højgaard, 2011). The construction of the parallel line in our case particularly re-
quires teachers’ insight. Competent teachers do not need to recall memory on the construction 
but obtain the insight from the preformal proofs. 

Teachers can make effort to prepare for a good lesson for teaching proofs. We expect that 
respondents should have learnt the formal proof of the triangle postulate indirectly by reading 
the three methods of preformal proofs demonstrated. A competent teacher can interconnect the 
approaches of the two types of proofs, preformal and formal, with some of the hints provided. 

Contingency is one of the teachers’ knowledge competencies described in Rowland’s 
knowledge quartet mathematics teaching model (Rowland, Huckstep, & Thwaites, 2005; Rowland 
& Turner, 2007). A competent teacher can create a formal proof in a lesson (described in this 
paper) without prior preparation when students ask for a formal, deductive formulation of the 
proof after the teacher has demonstrated the preformal proofs. A competent teacher with rich 
contingency can respond to irregular and unpredictable scenarios during teaching. 

Conclusion 

Affinity with using preformal proofs 
Competent mathematics teachers are commonly believed to possess many different approaches 
in delivering abstract mathematical concepts or ideas. Lower secondary mathematics students, 
who encounter mathematics content including justification and logical arguments, may experi-
ence frustration regarding how to start a proof. Teachers’ ability to illustrate a preformal proof 
of the triangle postulate helps students to grasp the idea of adding the angles, tiling them 
through transformation, and eventually constructing the formal proof. 

Our study reveals a problem encountered during mathematics teacher education: Mathe-
matics educators emphasise the PCK of teachers, and they are expected to be capable of teach-
ing mathematical proofs. However, the local syllabi of teacher education colleges skew the fo-
cus on teachers’ PCK and lack elaboration of interconnecting PCK with pure subject knowledge 
in terms of proof teaching and information that a proof requires rich subject content knowledge 
through axiomatic, deductive reasoning. Although proficiency of using preformal proofs re-
flects teachers’ PCK, Barlow and Reddish (2006) asserted that mathematical ideas are initially 
generated in intuitive notions, such as preformal proofs in this investigation, and that deduction 
is an essential skill for mathematical argument and formal proof. Competency in subject 
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knowledge is the foundation to help teachers create a suitable preformal proof for students’ 
mathematical interpretation (Ball et al., 2008). In this study, we found that the participating 
teachers were quite comfortable using preformal proofs in lessons given their belief that stu-
dents can easily grasp the idea about the property of the angle sum of a triangle.  

Study limitations  
Preservice and novice teachers are unfamiliar with the term preformal proof because it never 
appears in local mathematics syllabi. However, we lack sufficient evidence to determine wheth-
er teachers are generally proficient in using preformal proofs in other topics of mathematics 
teaching. 

Although we believe that the angle-tiling procedure (preformal proof (a)) is illustrated in 
most local textbooks, teachers probably treat it as an alternative proof for students to easily un-
derstand the triangle postulate. This study contained only 72 samples; we simply diagnosed 
teachers’ knowledge on using preformal proofs and their preference for proof teaching in a hy-
pothetical setting. For a complete understanding of how well prepared our mathematics teach-
ers are in terms of the proficiency and knowledge competency of teaching proofs, we believe 
that a comprehensive investigation into teachers’ knowledge of proofs in various topics (e.g. 
algebra and geometry), with different scopes, such as calculus and set theory, is necessary. Our 
investigation only aimed to test teachers’ knowledge of preformal proofs and whether they pre-
ferred to use them in classroom instruction of the triangle postulate. Moreover, the comparisons 
between in-service and preservice teachers on the use of preformal proofs and proof teaching 
can also be studied to improve mathematics teachers’ knowledge of proofs and the teaching of 
proofs. 
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Appendices 

Appendix 1 

Table 12 
Reason for acceptances or rejections of preformal proofs 

Code Definition Coding rules 
SL Concerns of student 

learning 
At least one of the followings is described: 
(i) Student’s ability understand/learn/prove. 
(ii) Training student’s abilities. 
(iii) Succession/didactical structure (description of an 
order according to which the proofs shall be executed). 
(iv) Objective(s) of the lesson (application of theorems 
and examination focused). 

P Practical concerns At least one of the followings is described: 
(i) Time management. 
(ii) Convenience in teaching/instruction (teacher-
centered). 

MC Mathematical con-
tent concerns of the 
proofs 

At least one of the followings is described: 
(i) Structure of proofs, in particular considering the gen-
eralization power. 
(ii) Communicating an image of mathematics in the re-
spective direction. 

PN Concerns of physical 
natures of the proofs 

At least one of the followings is described: 
(i) Visualising the property/proof. 
(ii) Pragmatic experiencing the property/proof. 

A Concerns of stu-
dents’ attitudes 

At least one of the followings is described: 
(i) Student’s motivation and involvement. 
(ii) Student’s affection towards learning mathematics, in 
particular, proofs. 

 Other/ 
unrelated 

Other reasons not related to the above categories; a seri-
ous response but resulting from a misinterpretation of 
the task; spurious/no reasonable responses; blank or 
cross out. 

Table 13 
Rubrics for formal proof formulation 

Code Definition Coding rules 
Visually as-
sisted 

Attempt to formulate 
a proof with figures 

A figure is identified. 

Deductive 
proof 

A deductive proof is 
formulated 

A logical proof is formed with adequate explanation. 
No logical/mathematical mistake is found. 
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Incomplete 
proof 

A proof is formulat-
ed but incomplete 

A mathematically correct proof is formed without com-
plete explanation; e.g.,  
(i) a figure showing equities of alternate angles;  
(ii) an attempt that uses the property of exterior angles’ 
sum without justifying it; 
(iii) a valid proof that considers only some special trian-
gle (e.g. a right triangle). 

Unsuccessful An unsuccessful at-
tempt 

At least one of the followings is identified: 
(i) An attempt is mathematically invalid. 
(ii) Logical or mathematical mistake is found. 
(iii) Circular arguments is found. 

Appendix 2 

Table 14 
Rubrics for the scale of knowledge of proofs 

Scores Definition Coding rules 
0–3 Acceptance of pre-

formal proofs in Q1 
1 score for accepting each preformal proof presented. 

0–2 Ability to formulate a 
deductive proof in 
Q2 

2 scores for forming a deductive proof; 
1 score for forming an incomplete proof; 
0 scores for unsuccessful attempt. 

0–1 Knowledge of con-
nection 

1 score for acknowledging the connection between pre-
formal and formal proofs. 

0–6 Total score The sum of above. 

Table 15 
Rubrics for the scale of practice of proofs 

Scores Definition Coding rules 
0–4 Preference of proofs 

in Q3 and Q4 
1 score for choosing each proof presented (both prefor-
mal and formal proofs). 

0–1 Preference of mixed 
strategies 

1 score for demonstrating a teaching approach of using 
both preformal and formal proofs in class. 

0–1 Visual and pragmatic 
learning experience 

1 score for acknowledging that preformal proof can 
provide students with visual or pragmatic learning op-
portunity. 

0–1 For less capable stu-
dent 

1 score for acknowledging that preformal proof can 
help less capable students learning by providing alter-
native learning experience. 

0–1 For higher order 
thinking skills 

1 score for acknowledging that preformal can foster 
higher order thinking, in particular logical thinking. 

0–8 Total score The sum of above. 
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Table 16 
Rubrics for the scale of beliefs about proofs 

Scores Definition Coding rules 
+2 Advocating proofs An elaborative response which is a positive statement 

for proof and proving in mathematics teaching and 
mentions both two of the followings: 
Didactical considerations 
(i) Didactical consideration 
- To reproduce in student the problem-solving skills 
and mental habits of teachers/mathematicians (Larvor, 
2010, p. 78) 
- To encourage independence and self-possession (Lar-
vor, 2010, p. 78) 
- A divide in the course of mathematical teaching dur-
ing the standard education (Balacheff, 2010, p. 116) 
(ii) Consideration about potential issues while dealing 
with proof and proving in mathematics teaching (e.g. 
consideration of the connection between the abilities of 
learners and the proofs being proved), but which does 
not lead to the conclusion of avoiding proof and prov-
ing in mathematic lessons. 
Mathematical considerations 
(i) Mathematical consideration 
- To contribute to our understanding of the world 
around us (Hanna, Jahnke, & Pulte, 2010, p. 3) 
- Deductively valid arguments leading from true prem-
ises to true conclusions 
(ii) Functional consideration 
- To produce knowledge: proving theorems through 
using arguments of deductive logic; e.g. modeling 
(Hanna & Barbeau, 2010, p. 88) 
- To create a rupture between mathematics and other 
disciplines (Balacheff, 2010, p. 115) 

+1 Tendency of proofs A positive response about proof and proving in mathe-
matics teaching, which contains one of the above men-
tioned. The demarcation to the above scoring is because 
of less comprehensive and elaborative response that, 
however, remains positive by justification. If one con-
siders that proof and proving help in students’ cogni-
tive developments, or one shares his/her teaching ap-
proaches of (the order of teaching) preformal and for-
mal proofs in Q3 or Q4 (see Remarks), this is coded +1. 

0 Neutral Unjustified response about proof and proving in math-
ematics teaching. The argumentation does not make 
clear sense or is incomprehensible. If one means that 
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proof and proving is only the chronology/sequence of 
the curriculum, this is coded 0. 

−1 Tendency of rejecting 
proofs 

Respondents tend to reject proof and proving in math-
ematics teaching. If considerations and reasoning about 
problems regarding proof and proving in mathematics 
teaching are a dominant part of the response, it is coded 
−1 (i.e. non-dominant positive response is allowed). 

−2 Rejecting proofs The meaning of proof and proving in mathematics 
teaching is judged negatively. 

Appendix 3 
Questionnaire for respondent’s demography 

Demographics (mark a “√” for your choices) 
My gender is  Male  Female. 
My e-mail is (optional): 

1. In which year of study (semester) are you? 
 year 1  year 2  year 3  year 4  PGDE 
 others 

2. What is your minor subject (second subject) beside mathematics? 
 Sciences  Languages  Social Sciences  PE  Music 
 Art  Others 

3. What have you already learned in mathematics/mathematics education in your under-
graduate and/or PGDE/PGCD studies? 
Mathematics: 
 Number Theory 
 Essential Mathematics Concept/discrete mathematics/finite mathematics 
 Geometry/Geometry and Measurement 
 Linear Algebra/abstract algebra 
 Probability 
 Recreational Mathematics 
 Mathematical Analysis/introductory analysis/real analysis 
 Others 
Mathematics education: 
 Curriculum in mathematics 
 Teaching and learning in mathematics 
 Assessments in mathematics 
 Mathematics problem solving/problem solving and its enhancement 
 History of mathematics and its relationship with the teaching of mathematics 
 Use of ICT in mathematics teaching 
 Psychology of children/adolescence 
 Learner’s differences (talented and those with learning difficulties) in mathematics 
 Mathematics activities, games and explorations 
 Mathematics classroom Management 
 Pedagogical Content Knowledge in mathematics teaching 
 Others 

4. Do you already have any practical teaching experience (school practice/other related 
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experience)? 
 Yes  No 
If yes, what kind of? 
 As a student teacher in a school practice (e.g. Field experience) 
 As a subject instructor in a private institute (e.g. Tutor in tutorial school) 
 As a teaching assistant in a school 
 As a lab demonstrator or tutor in a university 
 Others 

 
                                                           
 

1 French textbook: Hatier, (1998), Le nouveau Pythagore class 4èmer, p. 165. 
2 Hong Kong textbooks: Chung Tai Educational Press. (2015), Effective Learning Mathematics (volume 1A), p. 4.17; Educa-
tional Publishing House Limited. (2013). Mathematics in Focus (volume 1A), p. 4.23; Hong Kong Educational Publishing 
Co. (2013). New Progress in Junior Mathematics (volume 1B), p. 5.21; Pearson Educational Asia Limited. (2007). Mathemat-
ics in Action (volume 1A), p. 238; Oxford University Press (China) Ltd. (2009). NEW CENTURY Mathematics (volume 
1A), p. 273. 
3 Proposition 1.13 states the following: ‘If a straight-line stood on a(nother) straight-line makes angles, it will certainly 
either make two right-angles, or (angles whose sum is) equal to two right-angles’ (Fitzpatrick, 2007, p. 18). Proposition 
1.29 states the following: ‘A straight-line falling across parallel straight-lines makes the alternate angles equal to one 
another, the external (angle) equal to the internal and opposite (angle), and the (sum of the) internal (angles) on the 
same side equal to two right-angles’ (ibid., p. 32). Proposition 1.31 allows one ‘to draw a straight-line parallel to a given 
straight-line, through a given point’ (ibid., p. 33–34). 
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